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Abstract: Regression testing is carried out to ensure that software modifications do not introduce new potential bugs to 

the existing software. Existing test cases are applied in the testing, such test cases can run into thousands, and there is 

not much time to execute all of them. Test Case Prioritization (TCP) is a technique to order test cases so that the test 

cases potentially revealing more faults are performed first. With TCP being deemed an optimization problem, several 

metaheuristic nature-inspired algorithms such as Bat, Genetic, Ant colony, and Firefly algorithms have been proposed 

for TCP. These algorithms have been compared theoretically or based on a single metric. This study employed an 

experimental design to offer an in-depth comparison of bat and genetic algorithms for TCP. Unprioritized test cases and 

a brute-force approach were used for comparison. Average Percentage Fault Detection (APFD)- a popular metric, 

execution time and memory usage were used to evaluate the algorithms’ performance. The study underscored the 

importance of test case prioritization and established the superiority of the Genetic algorithm over the bat algorithm for 

TCP in APFD. No stark differences were recorded regarding memory usage and execution time for the two algorithms. 

Both algorithms seemed to scale well with the growth of test cases. 

 

Indexing Terms: Test Case Prioritization, Bat Algorithm, Genetic Algorithm, Regression Testing, Nature-inspired 

Optimization Algorithms. 

 

 

1.  Introduction  

Software testing is a critical undertaking in software development. As such, software engineers test software at 

different stages and levels. Regression testing is done before updates or modifications to existing software are submitted. 

Such updates could arise from additional software functionality or fixing existing software bugs. The validation is 

critical in ensuring changes do not introduce new defects to the deployed software. Regression testing can be restated as 

testing software S on all the test cases, TCs in each test suite TS associated with S. If S does not pass on TS, it should 

reveal the test cases that fail. Regression testing requires the execution of existing test cases in TS. As software updates 

become frequent and the software’s size and complexity grow, test cases run into thousands, with their execution time 

running into hours [1]. Executing many test cases is both expensive and time taking.  

To ensure efficiency in regression testing, three categories of techniques, namely test case reduction, selection and 

prioritization, are implemented [1]. Test case reduction and selection techniques focus on selecting a subset of the test 

cases with the most failing test cases [2]. A significant drawback of these techniques is that they discard some test cases, 

potentially leaving some software defects unearthed [3].  

On the other hand, test case prioritization (TCP) does not discard any test cases [3]. The focus is on ordering test 
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cases to maximize the fault detection rate. As such, test cases capable of revealing more faults at an earlier stage are 

executed first –are prioritized [4]. This paper will focus on test case prioritization to the periphery of the other 

techniques. 

Several strategies for TCP, ranging from metaheuristic optimization algorithms to machine learning algorithms, 

have been proposed. Since prioritization is a ranking task, learning and, thus, machine learning algorithms have been 

applied [5]. Prioritization is also seen as an optimization problem, aiming to identify the most efficient ordering of test 

cases [6]. To this end, numerous nature-inspired optimization algorithms, including Bat and Genetic algorithms, have 

been proposed. Studies such as [6, 7] have found the Bat algorithm, modified or adapted as is,  to offer great potential in 

TCP. 

On the other hand, the Genetic algorithm is deemed mature Gupta [8], and Bajaj and Sangwan [9] found it to offer 

even more promising results. Both algorithms are bio-inspired and metaheuristic. When the need to apply either Genetic 

or Bat algorithms for test case prioritization arises, practitioners and researchers have to decide on the efficiency of the 

two algorithms. Such a decision might not be based on a single metric, such as execution time but several metrics, such 

as APFD, execution time, memory utilization and the growth of such metrics as the number of test cases in a test suite 

increases. Most researchers utilize these algorithms without in-depth and experimental comparison. In some instances, 

the comparison is either done based on a single metric such as APFD or the algorithms are simply used for baseline 

comparison with new techniques that the researchers could propose. This paper seeks to fill this void by providing an 

in-depth and experimental comparison of these two algorithms. The findings can help researchers in the future to make 

more informed decisions.  

This study aims to compare Bat and Genetic metaheuristic algorithms for TCP. APFD, memory usage and 

execution time are metrics used in the comparison. Further, unprioritized test cases and brute force approaches are used 

for baseline comparison. The findings will be helpful to researchers wishing to apply or modify either of the algorithms 

for TCP. The findings will also contribute to research on using nature-inspired metaheuristic algorithms for TCP. The 

specific research questions in this comparative study are as follows: 

 

• R1: Which between Bat and Genetic algorithms yields the best APFD? 

• R2: How do Bat and Genetic algorithms compare in terms of memory and time usage in prioritizing a given set 

of test cases 

• R3: How do the growths of APFD for Bat and Genetic algorithms compare with the growth of test cases?  

 

The rest of this paper is organized as follows. Section 2 gives an overview of related work. Section 3 outlines the 

research methodology applied in this study, while Section 4 presents the experimental results. Section 5 discusses the 

results and implications, while Section 6 offers the study's conclusion. 

2.  Related Works 

Test case prioritization has gained traction from researchers owing to the vital role of regression testing in software 

development. Authors have proposed different approaches that ensure efficiency, realizing that it might not always be 

possible to execute all test cases given the limited time and resources. 

Researchers have explored algorithms primarily applied in machine learning. For example, Gokilavani and 

Bharathi [10] proposed a technique that used Principal Component Analysis (PCA) and K-means clustering to prioritize 

test cases. The study used PCA to select only the desired features from a Firefox bugs report dataset. Then, attributes 

were clustered using the K-means algorithm. A ranking algorithm was then used to rank the clusters and test cases in 

them. The technique was also evaluated using the know GZIP dataset, a real-world program with actual faults. The 

APFD metrics recorded promising performance for this technique.  

Further, Bagherzadeh et al. [11] applied reinforcement learning to TCP. The study established the potential of 

machine learning to perform better in TCP than existing methods. 

Other studies have focused on the application of metaheuristics nature-inspired algorithms. Vescan et al. [12] 

applied the Ant Colony algorithm to TCP. The algorithm’s properties allowed TCP’s features, such as cost and faults, to 

be encoded with the algorithm implemented in C/C++ language. The authors termed the results encouraging. 

Khatibsyarbini et al. [13] applied the firefly algorithm, a metaheuristic nature-inspired algorithm, to TCP. The study 

used benchmark programs to evaluate the performance of the algorithm. The metric used was APFD. The firefly 

algorithm performed slightly better than the known metaheuristic algorithms, such as the genetic algorithm. 

The genetic algorithm (GA) is regarded as one of the mature and well-known [14] bio-inspired algorithms applied 

in optimization. Darwin’s theory of evolution inspires this algorithm. A fitness function is designed based on the goal to 

be achieved since the algorithm is based on the concept of evolution. Test cases undergo the operations selection, 

crossover and mutation and thus generate new solutions. At each iteration, the fitness function is evaluated to see if the 

permutation of test cases produces a better fitness – higher APFD. The study applied GA to test case prioritization. The 

study improved the original GA by including block coverage information. The study recorded better performance of GA 

with coverage information than GA without coverage information.  
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Mukherjee and Patnaik [3] surveyed 90 primary studies to understand the different approaches applied to TCP for 

studies conducted between 2001 and 2018. The study established three key findings. Firstly, APFD was the most used 

metric of all the studies carried out in the period under study. Secondly, coverage-aware prioritization methods were 

more prevalent. Thirdly, most research used C or Java programs for TCP studies.  

Data mining concepts have also been explored for TCP. Azizi [15] proposed a tag-based recommender system 

TCP. The system used information retrieval (IR) to select test cases that were textually similar to the part of the code 

that had been altered. The study found the techniques effective for TCP. Similarly, Peng et al. [16] applied an 

information retrieval concept to TCP. The study used large, real-world software data sets with actual bugs for 

evaluation. It underscored the potential for information retrieval techniques in TCP. Change-aware IR techniques 

performed better than established coverage-based techniques for TCP.  

Banias [17] proposed a memoization dynamic programming approach to TCP. One thousand test cases were used 

to evaluate the technique. This technique realized great memory utilization – the techniques used between 40 to 400 

times less than other techniques.  

2.1.  Overview of BAT Algorithm 

The bat algorithm is a metaheuristic algorithm conceptualized by Yang [18] and modeled around the collective 

behaviour of bats. The algorithm is based on the echolocation behaviour of Microbats – a species of bats comprising 

small-sized insectivorous bats. These creatures use echolocation to locate their prey and avoid obstacles as they fly 

around. These bats prefer optimal locations while looking for prey. Using echoes, bats can determine the distance, 

orientation of the prey and the speed at which the prey moves. A bat sends an echo and listens back while hunting for its 

prey. As it nears the prey, it increases the pulse rate and decreases its volume. 

2.2.  Adapting BAT Algorithm to TCP 

Using the prior described bat behaviour, the following parameters have been modeled to help with optimization 

problems such as TCP. These variables are xi the location, vi the velocity, Ai the loudness, ri the pulse emission rate, and 

fi the frequency of the bat. The i represents the iteration; since bats keep moving, the algorithm is executed for several 

defined iterations. The steps in this algorithm are summarized as follows 

 

⚫ Initialize the population of bats with each bat assigned a random location xi with velocity vi,  

⚫ Compute the frequency fi  

⚫ Determine the pulse rate ri. and loudness Ai  

⚫ Perform N iterations by moving the bats. At each iteration, determine the local solution F(xi)by checking if 

ri>rand. 

⚫ While performing the iterations, determine the global best solution using F(xbest)< F(xi) and Ai>rand 

⚫ Terminate the algorithm after all iteration 

⚫ Order the bats. 

 

In our case, each bat represents a possible ordering of test cases. At each iteration, the APFD will be computed and 

stored as the local solution if ri> rand. The local solution will then be compared with the global best F(xbest) and 

assigned to be the global best if F(xbest)< F(xi) and Ai>rand 

2.3.  Overview of Genetic Algorithm 

Proposed by J. H. Holland in 1992, the Genetic algorithm is a population-based metaheuristic algorithm based on 

Darwin’s theory of survival for the fittest [14]. Chromosomes are vital elements in the solution space. They iteratively 

undergo operations such as selection, crossover and mutation based on their fitness to produce the most optimal solution 

after successive generations. 

2.4.  Adapting Genetic Algorithm to TCP 

The above-described evolution behaviour is modeled to adapt the Genetic algorithm to test case prioritization. 

The following is a summary of the steps to be followed 

 

• Initialize the population with N number of chromosomes. Each chromosome represents a possible combination 

of test cases. 

• Define the fitness criteria. In this case, it is the APFD. 

• Pick the chromosome (test case combination) with the best APFD 

• For all the chromosomes, while all the faults have been covered, perform the crossover and mutation. A single 

crossover is applied. 

• Terminate when the specified number of iterations is reached. 



A Comparative Analysis of Bat and Genetic Algorithms for Test Case Prioritization in Regression Testing 

16                                                                                                                                                                       Volume 15 (2023), Issue 1 

2.5.  Evaluation Metrics 

To compare the performance of the Bat and Genetic algorithms, this study will use known metrics such as the 

APFD, memory usage in MB and execution time in milliseconds. APFD is calculated as shown in (1). 

 

2 1
1

* 2*

TC TC TCN
APFD

N M N

+
= − +                                                             (1) 

 

Where N is the number of test cases, M is the number of faults and TC1+TC2…TCN refers to the sum of the 

position of the test cases that identify a particular fault. A higher APFD indicates that most faults are identified by test 

cases that are higher in the prioritization and, thus, excellent performance. A lower APFD value indicates that the 

position of the test case that identifies the faults is lower and, therefore, not good prioritization. In a systematic literature 

review involving 69 primary studies by Khatibsyarbini et al. [4], it was established that the most prevalent metric used 

for TCP studies was APFD, at 51%, followed by Coverage Effectiveness at 10%. The same study identified execution 

time at 7% as another metric commonly used to measure TCP performance. A similar survey by Lima and Vergilio [1] 

found that time and APFD were common metrics among the 35 primary studies used. 

3.  Methodology 

The study employed an experimental research design. The dependent variables were the AFPD, execution and 

memory usage.  

3.1.  Experiment Context 

Experiments for the Bat and Genetic Algorithm were carried out in a controlled environment. Each algorithm 

program was developed using Java and python programming languages in the IntelliJ IDEA integrated development 

environment (IDE). Matplotlib - a popular library used in python, was integrated into IntelliJ IDEA to plot the APFD 

graphs. The programs were executed on a computer with an Intel Core i7 processor, 8GB RAM. and 512GB SSD. 

3.2.  Experiment Variables 

The experiment consisted of controlled variables and dependent variables. Controlled variables are the ones the 

authors can tweak and modify to observe the effect on the dependent variables. In this study, the controlled variables 

were the size of the test cases and the number of iterations the programs were to be executed. The dependent variables 

were APFD, execution time and memory usage. 

3.3.  Experiment Data 

In this experiment, two test suits, A and B, were used. The two test suites were randomly generated. Random 

generation of test cases for experiments is not a new phenomenon amongst TCP researchers. Studies such as [7, 13] 

applied a similar approach. Test suite A had 10 test cases (T1-T10) and 13 faults (F1-F13), as shown in Table 1. Test 

suite B, which was double the size of test suite A was used to test the effect of the growth of test cases on the 

algorithms’ APFD, memory utilization and execution time. Test suite B had 20 test cases (T1-T20) and 26 faults (F1-

F26), as shown in Table 2. For both Table 1 and Table 2, the presence of  at the intersection of the fault’s column and 

test case’s row implied that the specific test case unearthed the specific fault. The presence of   implied that the 

specific test case could not reveal the specific error.  

For program execution during the experiment, Table 1 and Table 2 were converted into a matrix-fault matrix 

where each  was replaced with a one and each   was replaced with a zero. The fault matrix was then fed into the Java 

program for processing.  

Table 1. Fault Matrix - test Suite A. 

T/F F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13

T1 √ √ √ √ x x x x x x x x x

T2 √ x √ √ x x √ x √ x x x x

T3 x √ x x x x √ √ x x x x x

T4 √ x √ x x x √ x x √ x √ √

T5 x x √ √ x x √ x √ x x x x

T6 x x x x x √ √ √ √ x x x x

T7 √ x x x x x √ √ x x x √ √

T8 x √ x √ x √ x x x x √ x x

T9 x x x x √ √ √ √ √ x x x x

T10 x x x √ √ x √ √ x x x x √
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3.4.  Experiment Flow 

Each program was executed with test suite A, shown in Table 1, and for 50 iterations. This test suite had 10 test 

cases and 13 faults. The stochastic nature of metaheuristic algorithms necessitates the programs to be executed in many 

iterations. In addition to the Bat and Genetic algorithm, a brute force approach was used for baseline comparison. The 

brute force program applied no optimization strategy but generated all possible combinations of the test cases and 

evaluated their APFDs. Such permutations would be critical for assessing the performance of the Genetic and Bat 

algorithms. Lastly, a program that executed all the test cases in unprioritized order was executed. The unprioritized 

approach would offer a better baseline in comparing Bat, Genetic and the brute force approach. The point is to compare 

the metric values of the unprioritized cases with those of the test cases as ordered by the Genetic and the Bat algorithms. 

This would underscore the importance of test case ordering. For each program, the APFD, the execution time and 

memory usage were recorded for analysis. Further, the resulting test case ordering was noted and are shown in the 

results section. 

To understand the impact of doubling the test cases on the algorithms’ APFD, test suite B, shown in Table 2, was 

used. The test suite had double the number of test cases in Table 1. Test suite B had 20 test cases and 26 faults. The 

respective fault matrix was coded into the program for each test suite to automate the APFD computation process.  

Table 2. Fault Matrix - test Suite B. 

T/F F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18 F19 F20 F21 F22 F23 F24 F25 F26

T1 √ √ √ √ x x x x x x x x x x x x x x x √ √ √ x x √ √

T2 √ x √ √ x x √ x √ x x x x √ x √ √ x x √ √ x x x x √

T3 x √ x x √ x √ √ x x x x x √ √ x x x x x √ x x x √ √

T4 √ x √ x x x √ x x √ x √ √ √ x x x x √ √ √ √ √ x √ √

T5 x x √ √ x x √ x √ x x x x √ √ x √ x x √ √ x x √ √ √

T6 x x x x x √ √ √ √ x x x x √ √ √ √ x x x x x x x x x

T7 √ x x x x x √ √ x x x √ √ x x x x √ √ √ √ √ x x x x

T8 x √ x √ x √ x x x x √ x x √ x x x x x √ √ x x x √ √

T9 x x x x √ √ √ √ √ x x x x √ √ √ √ x x x x x √ x x x

T10 x x x √ √ x √ √ x √ x x √ x √ x √ x √ x x x x √ x x

T11 √ x x x x x √ √ x x x √ √ √ √ √ √ x x x x x x x x x

T12 x √ x √ x √ x x x x √ x x x √ x x x x √ √ x x x x x

T13 √ √ √ √ x x x x x x x x x x x x x x √ √ √ √ x x x x

T14 x √ x √ x √ x x x x √ x x x x x x √ √ √ √ √ x x x x

T15 √ x x x x x √ √ x √ x √ √ √ x x x x x √ √ x √ x √ √

T16 √ √ x √ √ x √ √ x x √ √ √ √ x x x x x √ √ x x x √ √

T17 √ x x x x √ √ √ √ x x √ √ √ x √ x x x √ x x √ x √ √

T18 √ √ x x x x x √ x x x √ √ x √ x x x x √ √ x x x x x

T19 √ x √ √ x x √ √ x √ x x √ x √ x √ x √ x x x x √ x x

T20 x x x x x x √ √ √ x x √ √ √ √ √ √ x x x x x x x x x  

4.  Results 

4.1.  APFD for BAT and Genetic Algorithms 

After 50 iterations, Bat Algorithm returned an APFD of 72.69%. This value was arrived at in its 14th iteration. The 

algorithm prioritized the test cases in this order: T9, T1, T4, T2, T3, T5, T8, T7, T10, and T6. Fig.1 shows the 

performance of the algorithm over all 50 iterations. 

As for the Genetic algorithm, after the 50 iterations, it returned an APFD rate of 75.76%. This was arrived at in its 

20th iteration. The algorithm prioritized the cases in the order T8, T4, T9, T2, T6, T5, T1, T3, T7 and T10. 

A brute force algorithm was applied to compare the performance of the two algorithms. A comparison between the 

three algorithms’ APFD values is shown in Fig. 3. Table 3 shows each algorithm’s final test case prioritization order.  

Table 3. Test Case Ordering. 

Algorithm Test Case Ordering 

Bat Algorithm T9 T1 T4 T2 T3 T5 T8 T7 T10 T6 

Genetic Algorithm T8 T4 T9 T2 T6 T5 T1 T3 T7 T10 

Brute force Algorithm T4 T8 T9 T1 T5 T6 T7 T2 T3 T10 

Unprioritized T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 
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Fig.1. Bat Algorithm’ APFD in TCP for 50 Iterations. 

 

Fig.2. Genetic Algorithm’ APFD in TCP for 50 Iterations. 
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Fig.3. A Comparison of Genetic and Bat Algorithms’ APFDs.
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4.2.  Memory Usage and Execution Time of Bat and Genetic Algorithms 

The study sought to establish the memory and time utilization of the two algorithms. The findings are as shown in 

Table 4. 

Table 4. Algorithm Resource Utilization. 

Algorithm Time in Milli seconds Memory in MB 

Bat Algorithm 187 1.19 

Brute force algorithm 94329 177.32 

Unprioritized 718 1.99 

4.3.  APFD, Time and Memory Utilization Growth 

We sought to understand the impact of doubling the number of test cases and the faults on the growth of the APFD, 

execution time and memory utilization for both Genetic and Bat Algorithm. The brute force algorithm and the 

unprioritized case approach are also presented to provide a better analysis. Table 5 presents our findings in this aspect. 

Running the brute force algorithm to explore all possible permutations of the test cases and compute their APFD 

proved challenging as the program kept running into Java heap space errors. 

Table 5. Algorithm Performance with Test Case Growth. 

 Test suite A Test suite B 

Algorithm APFD 
Time in Milli 

seconds 

Memory in 

MB 
APFD 

Time in Milli 

seconds 

Memory in 

bytes 

Genetic Algorithm 75.76% 109 1.18 87.69% 187 1.20 

Bat Algorithm 72.69% 187 1.19 87.5% 171 1.19 

Brute force algorithm 77.30% 94329 177.32 
Java heap space 

error 

Java heap space 

error 

Java heap 

space error 

Unprioritized 59.61% 718 1.99 83.26% 187 1.18 

5.  Discussion 

A comparison of the Genetic and Bat algorithms shows that the Genetic algorithm reports a higher APFD rate of 

75.76%, while the Bat algorithm achieved 72.69%. The difference is not stark for a small data set. However, the 

difference can be vital when the test cases run into thousands. The brute force approach achieves a stellar performance 

of an APFD of 77.30%. Comparing the APFD rates of the two algorithms to the APFD of the unprioritized approach 

that achieved a meager APFD rate of 59.61% underscores the importance of prioritizing test cases. More errors can be 

unearthed earlier with prioritized test cases as opposed to having the test cases unprioritized.  

For the execution time, the Genetic algorithm performs better by using 109 milliseconds than the Bat algorithm, 

which uses 187 milliseconds. The unprioritized approach uses 718 milliseconds, while the brute force approach uses 

94329 milliseconds. Given that our test suite A had a meager number of only 10 test cases and 13 faults, the brute force 

performance is dismal and unacceptable. This approach would fail for huge test cases. Even though the brute force 

approach had recorded the highest APFD, it was at the expense of time. It would be practical to forgo an accuracy of 

77.30% for either 75.76% or 72.69% and save more time.  

As for memory utilization, even though there is no stark difference between the Genetic algorithm and the Bat 

algorithm, the Genetic algorithm still performed better than the Bat Algorithm by using 1.18MB, while Bat Algorithm 

used 1.19MB. The baseline approaches reported higher memory usage, with the unprioritized approach using 1.99MB 

and the brute force approach using 177.32MB. Test case prioritization thus saves time and memory. It improves the 

APFD rate, allowing the discovery of software faults earlier in the regression testing. 

On doubling the test cases and faults, the Genetic algorithm still shows superiority over the Bat algorithm 

regarding the APFD rate. The Genetic algorithm reported 87.69%, 0.19% higher than the Bat algorithm, which reported 

87.5%. Both APFD rates improved since this depends more on the nature fault matrix and not entirely on the number of 

faults or test cases. Even though the difference is slight, the indication is that with a small or big test suite, the Genetic 

algorithm could perform better than the Bat algorithm. Interestingly, the Genetic algorithm used more memory and time 

with the doubling of test cases and faults than the Bat algorithm. While the differences are trivial, it would be 

interesting for researchers to see how they play out with large and real data sets. This forms part of this study’s future 

undertakings. The brute force approach could not run to the end with the doubled test cases and faults as the program 

repeatedly reported Java heap space errors and indications that more memory than available was needed. The approach 

is unscalable as it computes all possible permutations while computing the APFD rate. It is bound to take a long time 

and use tremendous memory. 

The limitation of the study is two-fold. Firstly, the use of randomly generated test cases and fault matrix. Using 
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real-world program test cases and faults would have been ideal. To mitigate this, two sets of test cases were used. The 

second test case is two times bigger than the first one regarding the number of test cases and faults. Secondly, the failure 

of the brute force approach to execute to the end using the second test case, which had 20 test cases and 26 faults, 

denies us the opportunity to compare Bat and Genetic algorithms against the brute force algorithm in terms of the APFD, 

time utilization and memory usage. The fact that the experiment shows the difference between Bat and Genetic 

algorithms regarding APFD, memory and time usage mitigates the limitation of the brute force approach failing.  

6.  Conclusion and Future Work 

This study’s goal was to compare Bat and Genetic algorithms to establish which of the two is more efficient. Such 

information would be helpful to test case prioritization researchers and practitioners in deciding which of the two 

algorithms to apply in TCP or similar problem domains. To meet this goal, the study sought to determine the APFD, 

memory usage and execution time of both Bat and Genetic algorithms subjected to the same test cases. Two test case 

sets were used where test case set two had double the number of test cases and faults as those of test case set one. This 

would help us understand how APFD, memory usage and execution time would vary with growth in test cases. 

Additionally, two baseline approaches were used for comparison with Bat and Genetic algorithms, namely the brute 

force and unprioritized test cases. This study established the superiority of the Genetic algorithm over the Bat algorithm 

for test case prioritization in terms of the average percentage of faults detection. Even though the brute-force approach 

recorded a stellar performance intern of APFD on smaller test cases, the time utilization and memory utilization are 

unacceptable. On the other hand, the unprioritized test case approach offers a poor performance in terms of its APFD, 

memory and time utilization compared to Genetic and Bat algorithms, underscoring the need for test cases to be 

prioritized during regression testing. Further, the study concludes that there is no considerable difference in memory 

usage and execution time between the Genetic and Bat algorithms, even though the Genetic algorithm performs better 

in the two aspects.  

Future work will focus on using real-world project test cases and faults. Such as the study will compare the two 

algorithms with a huge data set and the complexities of real test cases and faults as opposed to randomly generated test 

cases. 
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